
Riccardo Maria BIANCHI

DEVELOPER PORTFOLIO

Scientific Software Development 
selected projects

August 2017

�2

Distributed RESTful
services to serve
Geometry data 
Interactive querying and
retrieval of detector
description data
2017

C++, Python, SQL, Cypher

Neo4j, ElasticSearch, SQLite

Until now, Detector Description data were
accessible only wrappers from within the
ATLAS framework; and only from memory.

That prevented to use the detector description
data in standalone applications; also, was not
possible to query geometry data, neither
retrieve data subsets.

We built two web services, with two different
technologies, with two different targets in
mind. A graph query and REST API for
interactively querying the actual ATLAS
Detector Description data, based on Neo4j;
where users can explore and debug the ATLAS
geometry used in all ATLAS tasks. And a REST
service, based on an ElasticSearch cluster, for
interactively fast retrieve of the final volumes
compos ing the ATLAS geomet ry : a l l
transformations are computed and all
attributes are collected at indexing time.

Facts & Figures

The new web services have been presented at
the ACAT 2017 conference.

https://indico.cern.ch/event/567550/contributions/2628864/

�3

GeoModel
persistification 
An experiment-agnostic
detector description on file
2016-2017

C++, Python, SQL, Cypher

Qt5, SQLAlchemy, SQLite, Neo4j

GeoModel is a library used for describing the
detector geometry of the ATLAS experiment.
The configuration is stored in an online
database and the geometry tree is built in-
memory, to be used in the reconstruction and
in the simulation (through converters for
G e a n t 4) . GeoMode l a lways l acked a
persistification mechanism.

As a start, I have extracted GeoModel from the
ATLAS software: it is now a standalone
package, ready to be used in other HEP
experiments. Then, I created new packages to
dump the geometry and to restore it; and I
designed a data model and a database (SQLite).

A great effort has been put in optimizing the
data model, to have fast access to data and a
small size of the database file.

A new development is focused on serving the
geometry through a REST service from
ElasticSearch and from a Neo4j graph DB.

Facts & Figures

The memory footprint of the ATLAS detector
description is about 150 Mb, while the size of
the new database file storing it is about 45 Mb.
Small enough to be sent in an email.

The new GeoModel has been presented at the
CHEP 2016 conference. The outcome of the new
development will be submitted to ACAT 2017.

PhysicalVolume

FullPhysicalVolume

SerialTransformer PhysicalVolume PhysicalVolume

Transformation

PhysicalVolume

PhysicalVolume PhysicalVolume

PhysicalVolume

PhysicalVolumePhysicalVolume PhysicalVolume

AlignableTransform

Transformation TransformationPhysicalVolume

PhysicalVolume

PhysicalVolume

Shared transformation
Shared subtree

Root volume

�4

VP1 Light 
A standalone experiment-
agnostic event display
2016-2017

C++

Coin3D (OpenInventor), Qt5

VP1 Light is a standalone event display aimed
at being used in physics analysis.

VP1, the ATLAS 3D event display, is a powerful
tool, integrated in the experiment’s framework
and capable to access and visualize all kinds of
ATLAS data. But it must be run within the
experiment’s software release, so it is heavy
and not user-friendly; in particular for users
who want to use it for physics analysis.

I have extracted all VP1 base packages from the
experiment framework; then I integrated the
new GeoModel persistification mechanism.
VP1 Light is now independent from ATLAS, but
capable to show the full ATLAS geometry as
VP1 does.

The next step will be the development of an
interface to ROOT files. In this way, VP1 Light
would be able to show physics objects as well,
like tracks and jets.

VP1 Light is developed in C++, making use of
the 3D graphics library Coin3D.

Facts & Figures

The initialization of VP1 takes a very long time,
because the whole ATLAS framework must be
started, even when not needed. On the
contrary, VP1 Light now shows the ATLAS
geometry, in all its glory, in only few seconds.

Presented at the CHEP 2016 conference.

�5

ATLAS Collaboration
Map 
An web interactive map of
the ATLAS Collaboration
2015-2016

Python, Javascript

D3.js, JSON

The ATLAS Collaboration is composed by
around 140 institutions from around 40
countries. And it is always evolving: new
members and institutes join the collaboration,
others leave.

So far, the only map of the collaboration was
on a poster, drawn by hand. The ATLAS
management wanted a more modern map.

Thus, I proposed to build a web interactive
map, from data fetched directly from the
ATLAS database, Glance. I developed Python
tools to get, clean, filter and organize data
from the database. Then I developed an
interactive map to let the user explore the
member institutes and their countries, and to
visualize different information from the
database.

The Python tools export data in the JSON
format, which are then read from the web
application written in Javascript. The data
visualization and the map are developed using
the library D3.js. Cron jobs automatically
update the map data by regularly fetching new
data from the Collaboration database.

�6

VP1 
The ATLAS 3D event
display
2012-2017

C++, Python

Coin3D, Qt5

VP1 is the ATLAS 3D event display and it is part
of the experiment’s Core Software. Being
integrated in the experiment’s framework, VP1
can access and visualize all kind of
experimental data. It also visualize the actual
detector geometry, whose configuration is
taken directly from the online ATLAS Geometry
database.

VP1 let users interact with the data and the
visualization, applying cuts and filters, editing
the visualization settings and setting views.

VP1 is a framework of about 40 packages. Base
packages, interfaces and plugins are written in
C++. For the 3D graphics, it makes use of the
Coin3D (Open Inventor) graphics library. Users
can add additional views and functionalities
through plugins.

I am the lead developer and the maintainer of
the whole VP1 framework.

Facts & Figures

VP1 is used by experts at all phases of the
ATLAS data chain, for a number of different
tasks: detector development, verifying the
reconstruction and the simulation, data
analysis.

It is also used to produces images for
Outreach&Education, press releases and
multimedia.

�7

Whiteboard
A prototype for a new
multi-threaded HEP
framework
2012

C++

Intel TBB: tbb::flow_graph, tbb::task

HEP experiments rely on very complex
software frameworks to handle and to analyze
experimental data. In the current multi- and
many-cores era, we need to provide the
current HEP frameworks with multi-threading
and parallelization features, in order to better
or fully exploit the speed and the throughput
of modern hardware.

Many modern multi-threading technologies
are currently on the market, and one of the
most interesting ones is the Intel Threading
Building Blocks (TBB).

To test TBB performances in the HEP context
the prototype implements a basic parallel HEP
framework: a transient data storage, an event
manager, a scheduling mechanism, an
Algorithm class and its derived classes.

Whiteboard has been developed in C++, using
the tbb::graph and tbb::task libraries to
schedule and run algorithms and events in
parallel.

Facts & Figures

Whiteboard inspects the possibility of using a
task-based design in HEP.

It has been presented at the inter-experiments
Forum on Concurrent Programming Models and
Frameworks at CERN:

http://cern.ch/go/zB98

http://cern.ch/go/zB98
http://cern.ch/go/zB98

�8

DBE
Multi-threaded multi-user
Online DataBase Editor
2010-2012

C++, Python

Qt Model-View-Controller GUI,
Boost.Python, Qt threads

DBE is a multi-threaded multi-user editor
which lets the users to create, edit and handle
configuration files for the online system of the
ATLAS experiment.

The development of the DBE is part of the
ATLAS TDAQ software re-engineering. It has
been designed and developed to replace the
previous editor, which was based on the old
Motif graphical libraries and which lacked
most of the features nowadays expected in any
modern editor, l ike multi - threading,
drag&drop, the UNDO/REDO mechanism, a
plug-in interface.

DBE has been developed in C++, using the Qt
graphical libraries. The architecture is based
on the Model-View-Controller pattern.

A Python embedded interface has been
implemented to let the user extend the editor
functionalities by mean of Python scripts
(SWIG, REFLEX).

Facts & Figures

DBE is fully integrated in the ATLAS TDAQ
software release. It is also deployed in the
experiment control room as the default ATLAS
Configuration editor.

�9

DBV 
DataBase Viewer
2011-2012

Python, Javascript

CherryPy, Mootools, InfoVis

DBV is a modern web-based interactive
database viewer, designed to let the users
easily look at the relationships among the
objects defined in the ATLAS online system
configuration database.

At present the ATLAS Online Configuration
database stores O(100k) objects and many of
them have relationships towards several
hundreds of objects.

A great effort is being put in data visualization
to find the best way to present this large
dataset to the user, with clarity and simplicity,
assuring a nice user experience and clever
interaction.

A special attention is being used to find the
best data format as well, in order to handle
this large amount of data, while assuring a
fast query and a prompt answer to user
commands.

DBV is implemented as a web application. The
back-end has been written in Python using the
CherryPy framework; this part handles the
requests from the users, returning the results
of the queries to the graphical interface. The
graphical front-end is written in Javascript,
using the Mootools and InfoVis Toolkit libraries.

�10

Expert System Tester
Automated multi-threaded
test suite for the ATLAS
online Expert System

2012

C++, Python, CLIPS

Intel TBB, OpenMP, Python
threading

The ATLAS Online Expert System takes care of
the control of the correct setup of the ATLAS
detector during the data-taking.

The Expert System is implemented in CLIPS, it’s
part of the TDAQ Software Release and its rules
are fired by messages passed through a CORBA
protocol by the many applications running the
sub-detectors. Several actions are then taken
by the system, following the fired rules, to
assure the smooth run of the detector.

Being now the number of implemented rules
very high (~2000), a need for an automated
test suite has been arisen from the TDAQ
community. The new test suite would emulate
the ATLAS running configuration, test the
active rules generating fake messages from
dummy applications and test new rules before
applying them in production, keeping track of
the occurred conditions.

Facts & Figures

The new test suite is now in the design phase,
where demonstrators are being developed to
test the available technologies in term of
complexity, maintainability and speed.

Several multi-threading libraries are being
tested to assure a smooth test of many rules in
parallel on multi-core machines.

�11

WatchMan
Analysis multi-threaded
CASE framework

2008-2010 PhD Thesis

C++, Python

ROOT, PyROOT, Athena, Python
threading

WatchMan i s a mult i - threaded CASE
(Computer Aided Software Engineering)
framework, to easily implement and handle a
large number of Physics data analyses.

The idea came from the consideration that
most of the analysis classes have the major
part of their code in common. Accessing data,
looping over them, saving quantities and
building histograms, for example, are all
common operations whose code is usually
copied and pasted from a class to another.

WatchMan takes the user settings through a
simple text-based interface, and generate the
final analysis code ready to be run on data.

Interfaces for different data formats can be
added by users.

Facts & Figures

WatchMan has been used very successfully by
the Freiburg group and partially by the ATLAS
SUSY group to analyze the data from the first
LHC collisions in 2010, and to make ntuples
from Athena COOL data files on Grid.

WatchMan is now an independent package,
presented at ACAT 2010 and EuroSciPy 2010
conferences. A paper has been published in
the peer-reviewed Journal of Computational
Science (Elsevier):

http://dx.doi.org/10.1016/j.jocs.2012.04.005

http://pos.sissa.it/archive/conferences/093/061/ACAT2010_061.pdf
http://pos.sissa.it/archive/conferences/093/061/ACAT2010_061.pdf

�12

SUSYTools
SUSY Analysis Toolkit

2007-2009 PhD Thesis

C++, Python

ROOT, PyROOT, Athena

SUSYTools is a collection of common
algorithms, functions and tools used in data
a n a l y s i s , t a rgeted to the search o f
Supersymmetric particles.

SUSYTools has been developed in C++ as an
Athena package, and loadable as external
library in users’ analysis code.

Python bindings are generated with Reflex.

Facts & Figures

SUSYTools was initially used for Athena-based
data analysis. Then it was extended to be used
on ATLAS D3PD data files. It is now maintained
by the ATLAS SUSY Physics Group.

�13

MDT Calibration
Optimizing the ATLAS  
MDT calibration

2006 Master Thesis

Fortran, C++

PAW, ROOT

MDT muon chambers need accurate
calibration constants in order to extract
position and timing information from the
detector signal.

At the time of my thesis, new test-beam data
were taken with test beams, and I was
involved in the the optimization of the
computing algorithms for the simulation,
reconstruction and calibration (Fortran, C++),
in the development of MC simulation tools
(Fortran), and in the data analysis (ROOT, PAW).

Facts & Figures

The work ended with new and better
understandood calibration constants, together
with faster and optimized algorithms.

The results of my studies and the new
algorithms were then adopted as new
standards by the ATLAS MDT community and
published as a part of a peer-reviewed journal
paper on Nucl. Instr. Meth. A (Elsevier):

http://dx.doi.org/10.1016/j.nima.2008.09.031

https://cdsweb.cern.ch/record/968565

http://www.sciencedirect.com/science/article/pii/S0168900208013910
http://www.sciencedirect.com/science/article/pii/S0168900208013910
http://www.sciencedirect.com/science/article/pii/S0168900208013910
http://www.sciencedirect.com/science/article/pii/S0168900208013910

�14

POSIX Threads
evaluation
Multi-threading for ATLAS
DAQ ROS applications

2003 Bachelor Thesis

C++, C

Posix Threads (NPTL, NGPT),
Linux Kernel Optimization

NPTL and NGPT were developed around 2003
(by RedHat and IBM, respectively) to solve the
problems found in the original Linux
implementation of the POSIX threads
standard, LinuxThreads. NPTL is based on a 1x1
model, to give a kernel task to each thread;
while NGPT adopted a NxM model.

As the ATLAS ReadOut System (ROS) makes use
of the Linux threading extensively, an
evaluation of the two new threading
implementations was needed to understand
their influences in the ROS performances.

Various Linux kernels with the two libraries
and two versions of the Linux scheduler were
built and optimized, and their performances
have been tested and quantified in terms of
threads scaling, bottlenecks and speed.

Facts & Figures

NPTL gave better results compared with
LinuxThreads. And the modifications to the
Linux scheduler solved several bottlenecks
which had been observed before. The ATLAS
ROS could benefit from this new features.

The NGPT project was abandoned by IBM in
late 2003, and the NPTL was adopted as the
new POSIX Threads implementation for the
Linux kernel, starting from glibc 2.4 and kernel
2.6.

�15

Programming skills:

Programming languages: C++, Python, Javascript, Fortran, Processing • Multithreading: Boost,
Intel TBB, OpenMP, pthread, QtThread, pythreading, MPI • GUI libraries: Qt4/Qt5 • Javascript
libraries: D3.js, jQuery, Bootstrap, Mootools, Qooxdoo, InfoVis, Flot • Markup: XML, JSON,
XHTML+CSS • Query languages: SQL, Cypher • Software Optimization • Builders: CMake,
QMake, Makefile, CMT • CI: BuildBot, Jenkins • Dev Tools: gdb, gproof, Intel Parallel Studio,
Valgrind, CppUnit, Boost.Test, Google Test, Catch • IDE: Eclipse, XCode • Data Analysis:
Pandas, Matplotlib, ROOT, PyROOT • Physics frameworks: Athena • Databases: SQLite, Neo4j
graph DB • Version control: Git, SVN, CVS • Code repositories: GitLab, GitHub, Bitbucket •
Issue-tracking & User support: JIRA, Trac, Savannah, Bugzilla, Sharepoint • Typesetting:
LaTeX, XeLaTeX • Software development cycle • Agile development • Project management
and development organization with JIRA and other platforms

Developer Portfolio (this document):
https://ric-bianchi.github.io/cv/BianchiPortfolio.pdf

Contact:

Dr. Riccardo Maria BIANCHI
University of Pittsburgh

c/o CERN
CH-1211 Genève 23
Switzerland

email: riccardo.maria.bianchi@cern.ch
www: https://www.riccardomariabianchi.com

Last update: 25.08.2017

https://ric-bianchi.github.io/cv/BianchiPortfolio.pdf
mailto:riccardo.maria.bianchi@cern.ch
https://ric-bianchi.github.io
https://ric-bianchi.github.io/cv/BianchiPortfolio.pdf
mailto:riccardo.maria.bianchi@cern.ch
https://ric-bianchi.github.io

